SERIES VNR UNIDIRECTIONAL VALVES

Series VNR Unidirectional valves

Ports of Thread version: M5, G1/8, G1/4, G3/8, G1/2, G3/4, G1 Dimensions of Tube/Tube version: Ø4; Ø6; Ø8; Ø10; Ø12

- » In-line mounting thanks to integrated fittings
- » Low operating pressures
- » Robust design, brass body
- » Version 6580 and 6510 in FKM with a wide range of chemical compatibility and operating temperatures extended.
- » Version for use with oxygen available

Series VNR unidirectional valves are available in the Thread or Integrated Fitting version. Thanks to their construction they operate at low pressures.

GENERAL DATA

Valve group automatic valves

Construction poppet-type

Materials brass body

stainless steel spring

stainless steel spring NBR/FKM seals (for version 6580)

Mounting in any position

Dimensions thread version M5, G1/8, G1/4, G3/8, G1/2, G3/4, G1

Dimensions tube version Ø4; Ø6; Ø8

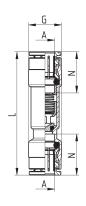
Operating temperature $0 \,^{\circ}\text{C} \div 80 \,^{\circ}\text{C}$; NBR (with dry air -20 / +80 $^{\circ}\text{C}$) FKM (with dry air - 20 / +200 $^{\circ}\text{C}$)

Medium filtered air without lubrication.

If lubricated air is used, it is recommended to use ISO VG32 oil. Once applied the lubrication should never be interrupted.

CAMOZZI Automation

Series VNR unidirectional valves


M5-G1/8-G1/4	G3/8-G1/2-G3/4-G1
MS S	3
R	R
	2 VNR1

DIMENSIONS							
Mod.	L	SW	D	Flow 6 bar ΔP1(Nl/min)	Min. operating pressure (bar)	Max working pressure (bar)	
VNR-205-M5	M5	25	8	9	50	1	10
VNR-210-1/8	G1/8	34	13	15	600	0.2	10
VNR-843-07	G1/4	43	17	20	1400	0.2	10
VNR-238-3/8	G3/8	55	23	34.5	3000	0.02	25
VNR-212-1/2	G1/2	58.5	27	34.5	5800	0.02	25
VNR-234-3/4	G3/4	65	33	41.5	8000	0.06	25
VNR-201-01	G1	74.5	40	48	13000	0.06	25

Series VNR unidirectional valves

Mod.	Α	G	L	N	Flow 6 bar ΔP1(Nl/min)	Min. operating pressure (bar)	Max operating pressure (bar)	Weight (g)
6580 4-VNR	4	9	40	14	85	0,5	10	13
6580 6-VNR	6	12	48	16	450	0,2	10	20
6580 8-VNR	8	14	52.5	17.5	900	0,2	10	30

	_
	$\overline{}$
	>
	\sim
i	$\overline{\mathcal{A}}$

NOT		
NO1	F7	

ES			